Г.В. ЛЕДУХОВСКИЙ, В.Н. Виноградов, С.Д. ГОРШЕНИН, А.А. Коротков

ИССЛЕДОВАНИЕ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ **АТМОСФЕРНОЙ** ДЕАЭРАЦИИ ВОДЫ

ИССЛЕДОВАНИЕ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ ФТМОСФЕРНОЙ ДЕАЭРАЦИИ ВОДЫ

Г.В. Ледуховский, В.Н. Виноградов, С.Д. Горшенин, А.А. Коротков

МОНОГРАФИИ ИГЭУ

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Ивановский государственный энергетический университет имени В.И. Ленина»

Г.В. ЛЕДУХОВСКИЙ, В.Н. ВИНОГРАДОВ, С.Д. ГОРШЕНИН, А.А. КОРОТКОВ

ИССЛЕДОВАНИЕ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ АТМОСФЕРНОЙ ДЕАЭРАЦИИ ВОДЫ

Под общей редакцией кандидата технических наук, доцента Г.В. Ледуховского УДК 621.321 Л 39

Ледуховский Г.В., Виноградов В.Н., Горшенин С.Д., Коротков А.А. Исследование технологических процессов атмосферной деаэрации воды / под общ. ред. Г.В. Ледуховского; ФГБОУВО «Ивановский государственный энергетический университет имени В.И. Ленина». – Иваново, 2016. – 420 с.

ISBN

В книге систематизированы результаты авторских исследований процессов теплообмена, десорбции растворенного кислорода и хемосорбции-десорбции диоксида углерода из воды термическими струйно-барботажными деаэраторами атмосферного давления.

Издание предназначено для научных работников, занятых процессами тепломассообмена в энергетическом оборудовании. Книга может быть полезной инженерно-техническому персоналу цехов и служб наладки ТЭС и энергообъединений. Отдельные главы и разделы книги могут быть использованы при изучении профильных технических дисциплин лицами, осваивающими образовательные программы бакалавриата и магистратуры по направлению подготовки 140100 «Теплоэнергетика и теплотехника».

Табл. 39. Ил. 121. Библиогр.: 217 назв.

Печатается по решению редакционно-издательского совета ФГБОУВО «Ивановский государственный энергетический университет имени В.И. Ленина»

НАУЧНЫЕ РЕДАКТОРЫ:

канд. техн. наук, доцент Г.В. Ледуховский д-р техн. наук, профессор Е.В. Барочкин

РЕЦЕНЗЕНТЫ:

д-р техн. наук, проф. В.И. Шарапов (ФГБОУВО «Ульяновский государственный технический университет»);

д-р техн. наук, проф. Н.Н. Ефимов, канд. техн. наук, доцент С.В. Скубиенко (ФГБОУВПО «Южно-Российский государственный политехнический университет им. М.И. Платова»)

ISBN

© Г.В. Ледуховский, В.Н. Виноградов, С.Д. Горшенин, А.А. Коротков, 2016

ОГЛАВЛЕНИЕ

Введение	
Глава 1.ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ	
ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ	
ТЕРМИЧЕСКОЙ ДЕАЭРАЦИИ ВОДЫ 9	
1.1. Термическая деаэрация воды как водоподготовительное	
мероприятие на объектах энергетики9	
1.2. Типы деаэраторов и области их применения	
в энергетических установках	2
1.3. Анализ опубликованных данных о физико-химических	
основах термической деаэрации воды 14	1
1.3.1. Термическая деаэрация как абсорбционный	
npoyecc	
1.3.2. Статика процесса деаэрации	
1.3.3. Кинетика процесса деаэрации27	/
1.3.4. Факторы, определяющие эффективность	_
термического деаэратора)
Глава 2. КОНСТРУКЦИИ СТРУЙНО-БАРБОТАЖНЫХ	
ДЕАЭРАТОРОВ АТМОСФЕРНОГО ДАВЛЕНИЯ39)
2.1. Общие сведения о конструкциях атмосферных	_
деаэраторов	
2.2. Деаэраторы малой производительности	5
2.3. Деаэрационные колонки повышенной	`
производительности	
2.4. Деаэраторные баки	
2.5. Предохранительно-сливные устроиства	
2.7. Конструкционные материалы, используемые	
при изготовлении атмосферных деаэраторов и элементов	
их обвязки	3
Глава 3. КОРРОЗИОННАЯ АКТИВНОСТЬ КИСЛОРОДА	r
И ДИОКСИДА УГЛЕРОДА И ПУТИ ИХ ПОСТУПЛЕНИЯ В ЦИКЛЫ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК 99	
	,
Глава 4. АНАЛИЗ ОПУБЛИКОВАННЫХ ДАННЫХ	
ОБ ЭФФЕКТИВНОСТИ ДЕАЭРАЦИИ ВОДЫ	
СТРУЙНО-БАРБОТАЖНЫМИ ДЕАЭРАТОРАМИ	
АТМОСФЕРНОГО ДАВЛЕНИЯ11	l

5.2.8. Деаэратор ДА-50 деаэрационной установки	
питательной воды паровых котлов котельной «Южная»	
МУП «Теплоэнергия» г. Череповец	208
5.2.9. Деаэраторы ДА-50 ПГУ-ТЭЦ	
ЗАО «Родниковская энергетическая компания»	209
Глава 6. АНАЛИЗ РЕЗУЛЬТАТОВ	
ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ	
И РАЗРАБОТКА СТАТИСТИЧЕСКИХ МОДЕЛЕЙ	
ПРОЦЕССОВ ДЕАЭРАЦИИ ВОДЫ	
В ДЕАЭРАЦИОННЫХ КОЛОНКАХ	213
6.1. Методика расчета параметров потоков	
теплоносителей внутри деаэраторов, не обеспеченных	
измерениями в ходе экспериментальных исследований	213
6.2. Оценка применимости опубликованных моделей	
для расчета показателей работы деаэрационных колонок	
6.2.1. Нагрев воды в струйных отсеках	219
6.2.2. Десорбция растворенного кислорода	
в струйных отсеках	226
6.2.3. Нагрев воды и десорбция растворенного кислорода	
на барботажном листе	227
6.2.4. Хемосорбция-десорбция диоксида углерода	
в элементах деаэрационных колонок	228
6.3. Разработка статистических моделей	
для расчета показателей работы деаэрационных колонок	
6.3.1. Нагрев воды в струйных отсеках	240
6.3.2. Десорбция растворенного кислорода в струйных	
отсеках	
6.3.3. Нагрев воды на барботажном листе	. 250
6.3.4. Десорбция растворенного кислорода	
на барботажном листе	252
6.3.5. Хемосорбция-десорбция диоксида углерода	
в элементах деаэрационных колонок	255
Глава 7. АНАЛИЗ РЕЗУЛЬТАТОВ	
ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ	
ПРОЦЕССОВ ДЕАЭРАЦИИ ВОДЫ	
В ДЕАЭРАТОРНЫХ БАКАХ	258
7.1. Десорбция растворенного кислорода	258
7.2. Хемосорбция-десорбция диоксида углерода	267

7.2.1. Обоснование выбора критериев эффективности	267
7.2.2. О механизме процесса термического разложения	
гидрокарбонатов	.272
7.2.3. Анализ результатов экспериментальных	
исследований	274
Глава 8. УТОЧНЕНИЕ КОНСТАНТНОГО	
ОБЕСПЕЧЕНИЯ МОДЕЛИ ТЕРМИЧЕСКОГО	
РАЗЛОЖЕНИЯ ГИДРОКАРБОНАТОВ	
В ДЕАЭРАТОРАХ	286
8.1. Постановка задач этапа исследований	286
8.2. Методика выполнения расчетов	287
8.3. Результаты уточнения констант скорости	
термического разложения гидрокарбонатов в деаэраторах	301
Глава 9. ПРОГНОЗИРОВАНИЕ ПОКАЗАТЕЛЕЙ	
ЭФФЕКТИВНОСТИ УДАЛЕНИЯ ИЗ ВОДЫ	
В ДЕАЭРАТОРАХ СОЕДИНЕНИЙ	
УГОЛЬНОЙ КИСЛОТЫ	307
9.1. Прогнозирование степени термического разложения	
гидрокарбонатов	307
9.2. Прогнозирование рН ₂₅ деаэрированной воды	311
9.3. Прогнозирование концентрации свободной	
углекислоты в деаэрированной воде	317
Заключение	.321
Библиографический список	324
Приложение 1. Метрологическое обеспечение	
экспериментальных работ	341
Приложение 2. Проверка гипотезы о принадлежности	
результатов измерений нормальному распределению	357
Приложение 3. Пример первичной обработки	
экспериментальных данных	369
Приложение 4. Окончательные результаты измерения	
параметров при испытаниях деаэраторов ДСА-300	
и ДА-300м ОАО «Северсталь» с отбором проб	
из внутренних элементов	377
Приложение 5. Окончательные результаты измерения	
параметров при испытаниях деаэраторов как цельных	
аппаратов	400

Введение

Деаэрация воды является одной из важнейших стадий подготовки теплоносителя для стационарных энергетических установок, включая паротурбинные установки и тепловые сети. Эффективность деаэрации воды во многом определяет надежность, безопасность и экономичность работы этих установок, поэтому обеспечение качественной дегазации технологических вод является одной из приоритетных задач эксплуатации и проектирования объектов энергетики.

В отечественной и зарубежной практике наиболее широкое распространение получили термические методы дегазации, обладающие неоспоримыми экологическими преимуществами по сравнению с альтернативными, например химическими, методами. Значительную долю дегазационных аппаратов, применяемых на действующих и проектируемых энергообъектах России, составляют термические деаэраторы струйно-барботажного типа атмосферного давления.

В книге систематизированы сведения о процессах термической деаэрации воды, приведены данные о типовых конструкциях, режимных характеристиках, составе технологических схем и особенностях эксплуатации атмосферных деаэрационных установок, а также обобщены результаты проведенных авторами экспериментальных и расчетных исследований, направленных на изучение физико-химических процессов деаэрации и повышение эффективности деаэрационных установок.

Представленная в настоящем издании информация предлагается научным работникам, занимающимся изучением процессов тепломассообмена в элементах энергетического оборудования. Ряд разделов могут оказаться полезными студентам теплотехнических специальностей высших учебных заведений в рамках изучения ими таких специальных технических дисциплин, как «Тепломеханическое вспомогательное оборудование и трубопроводы тепловых и атомных электрических станций», «Режимы работы и эксплуатация тепловых электрических станций», «Теплообменники энергетических установок». Книга может быть использована также специалистами, занимающимися эксплуатацией деаэрационных установок, инженерно-техническим персоналом электростанций и котельных при переподготовке и повышении квалификации.

Авторы выражают глубокую благодарность д-ру техн. наук, профессору, заведующему кафедрой «Теплогазоснабжение и вентиляция», руководителю НИЛ «Теплоэнергетические системы и установки» ФГБОУВО «Ульяновский государственный технический университет» Владимиру Ивановичу Шарапову; д-ру техн. наук, профессору, заведующему кафедрой «Тепловые электрические станции и теплотехника» Николаю Николаевичу Ефимову и канд. техн. наук, доценту, декану энергетического факультета (ФГБОУВПО «Южно-Скубиенко Сергею Витальевичу государственный политехнический Российский университет (НПИ) имени М.И. Платова») за ценные советы и замечания, сделанные при рецензировании книги, а также редактору УИУНЛ ФГБОУВО «Ивановский государственный энергетический университет им. В.И. Ленина» Наталье Серафимовне Работаевой за проделанную ей большую работу по подготовке рукописи к изданию.